Connect with us

Tech

Australia nears social media ban for children after heated debate

Published

on

Spread the love

Australia nears social media ban for children after heated debate

By Renju Jose and Byron Kaye

SYDNEY (Reuters) -Australia moved closer on Wednesday to banning social media for children under 16 after the parliament’s lower house passed a bill even as Alphabet’s Google and Facebook-owner Meta pressed the government to delay the legislation.

Marking some of the toughest social media controls in the world, Australia’s House of Representatives passed the bill 102 votes to 13 after Prime Minister Anthony Albanese’s centre-left Labor government secured bipartisan support for the ban.

The Senate is expected to debate the bill later on Wednesday, with the government keen to ensure it is passed by the end of the parliamentary year on Thursday.

Albanese, trying to lift his approval ratings ahead of an election expected in May, has argued that excessive use of social media poses risks to the physical and mental health of children and is looking for support from parents.

The planned law would force social media platforms to take reasonable steps to ensure age-verification protections are in place. Companies could be fined up to A$49.5 million ($32 million) for systemic breaches.

Australia plans to trial an age-verification system that may include biometrics or government identification to enforce the ban.

A Senate committee backed the bill this week, but also inserted a condition that social media platforms should not force users to submit personal data such as passport and other digital identification to prove their age.

The committee added that the government must “meaningfully engage” with youth when framing the law.

“Young people, and in particular diverse cohorts, must be at the centre of the conversation as an age restriction is implemented to ensure there are constructive pathways for connection,” committee Chair Senator Karen Grogan said.

In submissions to parliament, Google and Meta said the ban should be delayed until the age-verification trial finishes, expected in mid-2025. Bytedance’s TikTok said the bill needed more consultation, while Elon Musk’s X said the proposed law might hurt children’s human rights.

IMPACT ON FAMILIES

The ban was first announced during an emotionally charged parliamentary inquiry into social media, which included testimony from parents of children who had self-harmed due to cyber bullying.

It has fuelled vigorous debate with youth advocates arguing it robs children of a voice and parent groups saying under-16s are too young to navigate the digital world.

Teenagers have said the law could cut them off from their most important social and family connections, arguing a ban is not the solution.

“I understand that using social media a lot is not a good thing and I’m working on it,” said Sydney high-school student Enie Lam, 16. “But a ban is not going to work,” she said.

Albanese’s party, which does not control the Senate, won crucial support from the opposition conservatives for the bill, but has failed to win over the left-leaning Greens and some far-right lawmakers on civil liberties and privacy grounds.

One conservative lower house member broke from their party and voted against the bill on Wednesday, a rare event in Australian politics, and two conservative senators said they also would vote against it, arguing the law should be delayed until the age-verification trial was complete.

Even the Australian Human Rights Commission, an independent statutory authority, opposed the ban saying it violated children’s rights to self-expression and to participate in society.

Still, polling shows public support overwhelmingly in favour of the move. A YouGov survey released this week showed 77% of Australians backed the ban, up from 61% in August.

Australian media, from the publicly owned Australian Broadcasting Corp to Rupert Murdoch’s News Corp, also support the ban. An editorial campaign by News Corp, the country’s biggest newspaper publisher, pushed for the ban under the banner “Let Them Be Kids”.

“Our members feel that this is one of the biggest issues impacting on themselves and their families at the moment,” said Jenny Branch-Allen, president of the Australian Parents Council, an advocacy group.

“Big companies have to start taking responsibility. Let’s try and reduce the incidents we’re hearing involved with social media and young people in Australia.”

($1 = 1.5451 Australian dollars)

Tech

The wheels of an aircraft continue to spin and move immediately after takeoff.

Published

on

Spread the love

The wheels of an aircraft continue to spin and move immediately after takeoff.
Depending on the diameter of the tires, they may continue to spin between 1,500 and 2,000 rpm.
The captain must stop this rotation before the tires settle into the box, a task that is accomplished by different systems depending on the level.

Here is a brief explanation of how the wheels of an aircraft stop spinning

Most modern aircraft have automatic braking technology and devices to stop the wheels from spinning after takeoff, eliminating the need for pilots to use the brakes, as the automatic braking system works immediately after takeoff.
Passengers can feel the resulting vibration if they are sitting in the front and hear some intermittent noise immediately after takeoff.

Continue Reading

Tech

Telcos push 100% tarrif hike, await NCC approval

Published

on

Spread the love

Nigerian telecommunications companies said they proposed a 100 per cent tariff hike to the regulator, the NCC, across voice, data and digital and are awaiting approval.

The proposal, which has been submitted, aims to address rising operational costs, including inflation and increased service delivery expenses.

The disclosure was made by the Chief Executive Officer, MTN Nigeria, Karl Toriola, during an interview on Arise TV on Thursday.

However, the CEO said that it remains uncertain whether the Nigerian Communications Commission will approve the proposal.

According to Toriola, the proposed tariff hike is necessary for the sustainability of the industry, which has been facing significant financial pressures due to rising operational costs.

“We’ve put forward requests of approximately 100 per cent tariff increases to regulators. I doubt they’re going to approve that quantum of increases because they are very, very sensitive to the current economic situation in the country,” Toriola said.

Despite the challenges, Toriola expressed optimism that regulators would make the right decision, taking into account the realities of the sector.

The CEO emphasised that the focus is on ensuring the long-term sustainability of the industry, rather than short-term profitability.

“I believe we’re all on the same side, the policymakers, the regulators, our Chairman of ALTON, Gbenga Adebayo, and the industry. We’re united because we share concerns about a few fundamental issues. First, human rights, are critical to driving any economy. Without a sustainable industry, the broader economy and the well-being of the people will be negatively impacted.”

 

Continue Reading

Tech

Top secret lab is developing the UK’s first quantum clock

Published

on

Spread the love

A top secret lab is developing a super-precise ‘quantum clock’ that could revolutionize British intelligence.

This super-accurate timekeeping device, to be rolled out by 2029, will allow more precise navigation and surveillance on Royal Navy ships and RAF planes.

It will also ‘enhance the accuracy of advanced weapons’ like guided missiles and give British computer boffins the edge over online adversaries like cyber criminals.

The clock’s precision will be so refined that it will lose less than one second over billions of years, allowing scientists to measure time at an unprecedented scale.

It is the first device of its kind to be built in the UK and will be deployable on military operations in the next five years, according to Defence Science and Technology Laboratory (DSTL).

‘This first trial of advanced atomic clock represents a significant achievement in the UK’s quantum technology capabilities,’ said DSTL chief executive Paul Hollinshead.

‘The data gathered will not only shape future defence effort but is also a signal to industry and academia that we are serious about exploring quantum technologies for secure and resilient operational advantage.’

Quantum clocks use quantum mechanics – the physics of matter and energy at the atomic and subatomic scale – to keep time with unprecedented accuracy by measuring energy fluctuations within atoms.

Developed at the top-secret Defence Science and Technology Laboratory, (Dstl) the quantum clock will improve British intelligence and surveillance by decreasing the reliance on GPS technology, which can be disrupted and blocked by adversaries

 

To be rolled out by 2029, the quantum clock will allow more precise navigation and surveillance on Royal Navy ships and RAF planes. Pictured, Royal Navy Duke class Type 23 anti-submarine frigate HMS Portland

 

Quantum clocks are even more accurate that the ‘atomic clocks’, of which there are approximately 400 already in operation around the world.

The UK already has an atomic clock at the National Physical Laboratory in London, but this quantum clock will be the country’s first.

Nick France, CTO of Sectigo, told MailOnline: ‘A quantum clock is a type of atomic clock – essentially a super-accurate timekeeping device.

‘Atomic clocks work by measuring the resonant frequency of atoms, whereas quantum clocks measure very small energy changes (‘quantum fluctuations’) in these atoms, leading to increased accuracy even over super-accurate atomic clocks.

‘Atomic clocks currently are incredibly accurate anyway, but a quantum clock has accuracy levels where only a single second is lost in billions of years of operation.’

The British quantum clock will be ‘the first device of its kind to be built in the UK’, said the UK government in a statement, but it will not be a world first.

Back in 2010, the University of Colorado at Boulder developed a quantum clock with the US National Institute of Standards and Technology.

However, key barriers to deploying quantum clocks are their size – current models come in a van or in a car trailer and are about 1,500 litres in volume.

Atomic clocks use certain resonance frequencies of atoms to keep time with extreme accuracy. Pictured, atomic clock at the University of Colorado Boulder in the US

 

Back in 2010, the University of Colorado at Boulder developed a quantum clock with the US National Institute of Standards and Technology (pictured)

 

Pictured, NIST-F1, source of the official time of the USA

 

Potential of quantum clocks

  • Enable more precise and independent navigation systems, reducing reliance on GPS satellites, which are vulnerable to jamming or destruction in conflict scenarios.
  • Secure communications systems, such as encrypted military networks, which depend on highly synchronised timekeeping.
  • Enhance the accuracy of advanced weapon systems, like guided missiles, which rely on accurate timing to calculate trajectories and coordinate attacks.
  • Allow Armed Forces to gain an edge over adversaries in timing-critical operations, especially in areas like cyber warfare, where milliseconds can make a difference.

Source: DSTL

Just like most quantum equipment, quantum also have sensitivity to environmental factors such as heat and air molecules, limiting their transport between different places.

‘Quantum clocks are not small like watches or alarm clocks,’ France added.

‘These are devices that in current implementations can be large, even room-sized devices.

‘However, improvements in technology will decrease the size of these devices making them more portable.’

Apart from just ultra-precise timekeeping, quantum clocks could transform global navigation systems by helping satellite communications and aircraft navigation.

According to DSTL, their quantum clock will enable more precise and independent navigation systems, reducing reliance on GPS satellites, which are vulnerable to jamming or destruction in conflict scenarios.

It will improve communications systems, such as encrypted military networks, which depend on highly synchronised timekeeping, as well as boosting the accuracy of advanced weapon systems like guided missiles, which rely on accurate timing to calculate trajectories and coordinate attacks.

What’s more, British Armed Forces will get an edge over adversaries in ‘timing-critical operations’, such as cyber warfare, where milliseconds can make a difference.

Coordinated Universal Time (UTC) is defined by sophisticated, ultra-precise ‘atomic clocks’ around the world, which tick precisely and continuously. Experts are pictured here with the NIST-F2 atomic clock in the US

 

Cyber warfare refers to the actions by a nation-state or international organization to attack and attempt to damage another nation’s computers or information networks.

France told MailOnline: ‘Super-accurate timekeeping is important to governments and militaries to enable accurate navigation (using GPS or similar technologies) of planes and ships, but also guidance of weapons systems such as missiles.

‘Equally important to the military as well as civilians is secure communications.

‘Much of the secure communications for governments and the military relies on accurate time sources to function.

‘But equally these accurate clocks are useful for more civilian applications and general internet security, even securing your personal data as it’s transmitted around the internet.’

Companies and governments around the world are keen to cash in on the huge potential benefits that the spooky effects of quantum technology could bring.

Google last month unveiled a new quantum computing chip it said could do in minutes what it would take leading supercomputers 10 septillion years to complete.

Eventually, such a chip could power a ‘commercial’ quantum computer that could be purchased by members of the public and used in labs, offices and even homes.

These ultra-powerful machines, which use the spooky effects of quantum physics, could do everything from speed up AI, solve climate changeand discover lifesaving drugs.

WHAT IS THE ATOMIC CLOCK?

Atomic clocks have a timekeeping mechanism that use the interaction of electromagnetic radiation with the excited states of certain atoms.

The devices are the most accurate system we have for measuring time, with consistent standards applied.

They are the primary standards for international time distribution services, and uses to control wave frequency for TV, GPS and other services.

The principle is founded in atomic physics, measuring the electromagnetic signal that electrons in atoms emit when they change energy levels.

Modern versions cool atoms to near absolute zero by slowing the atoms down with lasers. With temperature of atoms driving their accuracy.

Every few years a ‘leap second’ is added to atomic clocks, by effectively stopping them for a second, to keep them in line with Earth’s rotation speed.

Read more

Continue Reading

Trending